Colorless crystals of the title compounds were of commercialgrade material (Merck). They are hygroscopic and were held in a capillary. Oscillation and Weissenberg photographs, as well as preliminary diffractometer data collection suggested the isomorphism of the crystals. The structure of $K_5Na(HPO_4)_3$ was solved by direct methods and a satisfactory solution was obtained in the non-centrosymmetric space group *Pna2*₁. The refinement for K₂HPO₄ was started by using the coordinates for the heavy atoms of K₅Na(HPO₄)₃. In both structures the H atoms were found from difference maps and refined with constraints (O—H = 0.97 Å). *SHELX*76 (Sheldrick, 1976) was used for the refinements.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71731 (42 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: DU1064]

References

- Baran, J., Lis, T. & Ratajczak, H. (1989). J. Mol. Struct. 195, 159-174. Gałecki, J. (1964). Preparatyka nieorganiczna, p. 578. Warszawa:
- Wydawnictwo Naukowo-Techniczne. (In polish.) Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure De-

termination. Univ. of Cambridge, England.

Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1994). C50, 487-488

LiGaSi₂O₆

AKIRA SATO, TOSHIKAZU OSAWA AND HARUO OHASHI

National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba, Ibaraki 305, Japan

(Received 15 February 1993; accepted 13 September 1993)

Abstract

The structure of gallium lithium metasilicate, LiGa- Si_2O_6 , has been determined from diffractometer data. The structure is similar to that of spodumene (LiAl- Si_2O_6).

Comment

The structure of the title compound is isostructural with LiAlSi₂O₆ and LiFeSi₂O₆ (Clark, Appleman & Papike, 1969), LiScSi₂O₆ (Hawthorne & Grundy, 1977) and LiInSi₂O₆ (Grotepass, Behruzi & Hahn, 1983). This structure (C2/c) takes the hightemperature form of LiFeSi₂O₆ and LiCrSi₂O₆, which transform to the low-temperature form ($P2_1/c$) at 228 and 343 K, respectively (Behruzi, Hahn, Prewitt & Baldwin, 1984).

Fig. 1. *a**-axis projection of LiGaSi₂O₆. Atom nomenclature follows that used by Clark, Appleman & Papike (1969).

Experimental

The title compound was prepared according to the procedure described by Ohashi, Osawa & Sato (1989).

Crystal data

LiGaSi2O6	$D_{\rm x} = 3.75 \ {\rm Mg \ m^{-3}}$
$M_r = 228.83$	Mo $K\alpha$ radiation
Monoclinic	$\lambda = 0.71073 \text{ Å}$
C2/c	Cell parameters from 22
a = 9.561 (1) Å	reflections
b = 8.569 (1) Å	$\theta = 33 - 37^{\circ}$
c = 5.268 (1) Å	$\mu = 7.29 \text{ mm}^{-1}$
$\beta = 110.244 (3)^{\circ}$	T = 298 K
$V = 404.90 (5) Å^3$	$0.20 \times 0.15 \times 0.11$ mm
Z = 4	Colourless
Data collection	

Data collection Enraf-Nonius CAD-4 diffractometer $\omega - 2\theta$ scans Absorption correction: by integration from crystal shape $T_{min} = 0.371, T_{max} =$ 0.501 1309 measured reflections 1309 independent reflections 1268 observed reflections $[I > 1.5\sigma(I)]$

Refinement

Refinement on FR = 0.017 $\theta_{max} = 40^{\circ}$ $h = 0 \rightarrow 17$ $k = 0 \rightarrow 15$ $l = -9 \rightarrow 9$ 3 standard reflections monitored every 100 reflections for orientation and every 240 min for intensity intensity variation: -0.8%

Extinction correction: isotropic secondary

wR = 0.038 S = 1.7 1268 reflections 48 parameters $w = 1/\sigma^{2}(F)$ $(\Delta/\sigma)_{max} < 0.005$ $\Delta\rho_{max} = 0.6 \text{ e } \text{Å}^{-3}$	Extinction coefficient: 12.6×10^{-6} Atomic scattering factors, including f' and f'', from <i>International Tables for</i> X-ray Crystallography (1974, Vol. IV)	 Clark, J. R., Appleman, D. E. & Papike, J. J. (1969). Mineral. Soc. Am. Spec. Pap. 2, 31-50. Grotepass, M., Behruzi, M. & Hahn, T. (1983). Z. Kristallogr. 162, 90-91. Hawthorne, F. C. & Grundy, H. D. (1977). Can. Mineral. 15, 50-58. Ohashi, H., Osawa, T. & Sato, A. (1989). J. Mineral. Petrol. Econ. Geol. 84, 70-73.
$\Delta \rho_{\text{max}} = 0.6 \text{ e A}^{-3}$	(1974, 101.11)	Geol. 84 , 70–75.

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

 $U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	z	$U_{\rm eq}$
Li	0	0.2642 (5)	1/4	0.0184 (7)
Ga	0	0.90154 (2)	1/4	0.00461 (3)
Si	0.29673 (3)	0.09112 (3)	0.26088 (6)	0.00443 (5)
0(1)	0.11357 (8)	0.08377 (8)	0.1442(1)	0.0054 (1)
0(2)	0.36547 (8)	0.26160 (9)	0.3232(1)	0.0086(1)
O(3)	0.35682 (7)	0.0001 (1)	0.0491 (2)	0.0096 (1)

Table 2. Selected geometric parameters (Å, °)

Si tetrahedron		Ga octahedron	
Si-O(1)	1.644 (1)	Ga-O(1)A1,B1	2.085 (1)
Si = O(2)	1.589(1)	Ga-O(1)A2,B2	1.987 (1)
Si-O(3)A1	1.620 (1)	Ga = O(2)C1, D1	1.893 (1)
Si-O(3)A2	1.626(1)	Mean of six	1.988
Mean of four	1.620		
		O(1)A1 - O(1)B1	2.763 (1)
O(1) - O(2)	2,728 (1)	O(2)C1-O(2)D1	2.930(1)
O(1) = O(3)A1	2.642 (1)	$O(1)A1 - O(2)C1 \times 2$	2.769 (1)
O(1) - O(3)A2	2.654 (1)	$O(1)A1 - O(1)A2 \times 2$	3.000(1)
O(2) - O(3)A1	2.651 (1)	$O(1)A2 - O(2)C1 \times 2$	2.863 (1)
O(2) - O(3)A2	2.554 (1)	$O(1)A2 - O(2)D1 \times 2$	2.732 (1)
O(3)A1 - O(3)A2	2.634 (1)	$O(1)A1 - O(1)B2 \times 2$	2.608 (1)
Si—Si	3.0620 (4)	Ga—Ga	3.1280(1)
O(1)—Si— $O(2)$	115.05 (4)	O(1)A1 - Ga - O(1)B1	83.00 (3)
O(1) - Si - O(3)A1	108.04 (4)	$O(1)A1 - Ga - O(2)C1 \times$	2 88.08 (3)
O(1) - Si - O(3)A2	108.49 (4)	$O(1)A1 - Ga - O(1)A2 \times$	2 94.88 (3)
O(2) - Si - O(3)A1	111.39 (5)	$O(1)A1 - Ga - O(1)B2 \times$	2 79.63 (3)
O(2) - Si - O(3)A2	105.19 (4)	$O(1)A2 - Ga - O(2)C1 \times$	2 95.10 (3)
O(3)A1 - Si - O(3)A2	108.46 (4)	$O(1)A2 - Ga - O(2)D1 \times$	2 89.51 (3)
		O(2)C1-Ga-O(2)D1	101.40 (3)
Li antiprism			
Li-O(1)A1,B1	2.073 (3)	Si—O(3)—Si	141.21 (5)
Li—O(2)C2,D2	2.181 (1)	Ga—O(1)—Ga	100.37 (3)
Li—O(3)C1,D1	2.466 (3)	O(3)—O(3)—O(3)	180.00 (1)
Mean of six	2.240		

The calculations were initiated with the atomic parameters of LiAlSi₂O₆ given by Clark, Appleman & Papike (1969). All calculations were performed with the SDP program system (B. A. Frenz & Associates, Inc., 1982).

Lists of structure factors and anisotropic displacement parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71629 (16 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: OH1040]

References

- B. A. Frenz & Associates, Inc. (1982). SDP Structure Determination Package. College Station, Texas, USA.
- Behruzi, M., Hahn, Th., Prewitt, C. T. & Baldwin, K. (1984). Acta Cryst. A40, C-247.

©1994 International Union of Crystallography Printed in Great Britain - all rights reserved

Acta Cryst. (1994). C50, 488-490

Strontium Cobalt(II) Diarsenate

JIA-CHERNG HORNG AND SUE-LEIN WANG*

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043

(Received 23 April 1993; accepted 4 September 1993)

Abstract

The novel compound, SrCoAs₂O₇, has been obtained from a hydrothermal reaction. SrCoAs₂O₇ adopts a tunnel structure and its framework consists of corner-sharing CoO₅ square pyramids and As₂O₇ groups. Sr atoms are located in the pentagonalshaped tunnels, which are formed by the edges of two square pyramids and three arsenate tetrahedra.

Comment

Recently, a large number of new structures in the A-V-P-O system, where A includes alkali, alkalineearth and transition-metal cations, have been synthesized under hydrothermal conditions (Kang, Lee, Wang & Lii, 1992; Lii, 1992; Lii, Wen, Su & Chueh, 1992). These phosphates show a variety of new structural types with tunnel or layer structures. However, little structural work on transition-metal arsenates has been reported. Recently, we noted that single crystals of VO(H₂AsO₄)₂ could be grown under hydrothermal conditions (Wang & Lee, 1991). Subsequent research revealed that many vanadium arsenates containing alkali or alkaline-earth metals can also be obtained by hydrothermal methods (Cheng & Wang, 1992; Wang & Cheng, 1993). The present study is an extention of our previous work on the cobalt arsenate system.

The title compound was obtained as violet crystals by heating a reaction mixture of Co(OH)₂ (0.4639 g), Sr(OH)₂.8H₂O (1.3267 g) and 12 ml 13.3% aq. H_3AsO_4 in a 23 ml teflon-lined autoclave at 503 K for 4 d followed by slow cooling (5 K h^{-1}) to room temperature.

Acta Crystallographica Section C ISSN 0108-2701 ©1994